Department of Botany

Permanent URI for this communityhttps://ir.nbu.ac.in/handle/123456789/4383

Since establishment in 1984, the department flourished with tireless efforts of faculties, staff and students. The course curriculum of the department has always been strong and forward looking. Syllabi have been revised regularly and the latest version was done with the introduction of semester system offering five special papers, namely Cytogenetics, Microbiology, Molecular Plant pathology and Fungal Biotechnology, Plant Biochemistry and Taxonomy of Angiosperms and Biosystematics.

Browse

Search Results

Now showing 1 - 2 of 2
  • ItemOpen Access
    Genetic Resources of Wild Rice (Oryza rufipogon) for Biotic and Abiotic Stress Tolerance Traits
    (University of North Bengal, 2021-03) Roy, Subhas Chandra
    Rice (Oryza sativa L.) is the most important staple food crop of the world; nearly half of the global population depend on it for majority of their dietary intake. Many stresses (biotic and abiotic) have critically affected rice production throughout the world due to global warming, changing climatic conditions and in addition non-durability of biotic resistance gene(s) incorporated into cultivars. Yield increase is not as per the required rate and becomes yield rate is in stagnation. Primary reason of yield stagnation is due to the narrow genetic base in the released varieties. Minimum number of parental lines were utilised to develop new crop varieties which ultimately leads to narrow genetic base. The narrow genetic base in the improved varieties is going to be a main bottleneck for crop improvement program which shield the yield increase. Genetic bottleneck during domestication causes erosion of the genetic diversity in the well adapted cultivars which leads to yield stagnation. Yield plateaus can be surmount through genetic gain by combining the yield related genes/QTLs from different genetic resources of rice germplasm both from local landraces (CLR) and crop wild relatives (CWR). Wild species are the reservoir of genetic diversity with wide adaptability and tolerance to many biotic and abiotic stresses. It is utmost necessary to characterize and conserve rice germplasm for evaluation and effective use of the genetic diversity prevailed in the rice gene pool. Genetic variability in respect to biotic/abiotic resistance is inadequate in the genetic resources of cultivated rice; however, these traits specific genes are available in the unexplored wild species of Oryza which are considered as rich source of agronomically important traits including biotic/abiotic traits. Therefore, breeders are trying to identify and transfer of these valuable genes from wild Oryza species to improve varieties through pre-breeding method and with the assistance of molecular breeding technology.
  • Thumbnail Image
    ItemOpen Access
    Rice research in the high-throughput sequencing era: Genomic breeding Rice breeding for better health
    (University of North Bengal, 2016-03) Roy, Subhas Chandra
    Rice [ Oryza sativa L.] is the most important cereal crop belongs to the family Poaceae (Grass) which provide staple food for half of the World's population (>3.3 billion). This staple food grain (rice) supplies the main energy resource providing 40-75% of the daily calorie intake to the world's poor people. It is equ ivalent to the proposition that 'Rice is life' in Asian continent because 90% people dependent on for their sustainable livelihood. Simultaneously Asia is considered as 'Rice Basket' because it produces 90% of the world's production (662 million tons, paddy rice, Mt). Total world production was 729 Mt from '154.3 million hectares with productivity of 4.1 tons/hectare (t/ha) in 2012 of which 662 million tons produced by Asian countries. Rice production has been doubled in the recent decades (1960s-1990s) during the tim~ of Green Revolution (1960s) primarily as the result of genetic improvement. It was factual that the varieties released in theĀ· last 30 years in the farmers field, had a narrow genetic base in-spite of high genetic diversity prevailed in the rice germplasm, and yield enhancing capacity has reached to plateau. We need more production of rice to feed 9 Billion people in 2050. Breeder could manage the yield increase over released varieties through genetic gain by combining the yield related genes/QTLs from various genetic resources of rice germplasms either from cultivated local landraces or from wild varieties. Germplasm diversity is the mainstay for crop improvement and genetic dissection of complex traits. Rice germplasm shows tremendous genetic diversity in both within the species and among the varietal groups. This genetic diversity may be associated with the diverse allel~ of important traits and can be exploited to introgress these traits using knowledge of molecular breeding techniques such as marker assisted breeding (MAB) or marker assisted selection (MAS). The Next Generation Sequencing based technology is used for whole genome analysis to unveil the genetic and genomic infor'mation pertaining to important traits for advancing the molecular breeding procedures to increase the production. That ultimately leads to the development of genomic breeding and genomic selection to accelerate the breeding process.